Interdiszciplináris kutatások az informatika és a fizika területén

Fülöp Ágnes

fulop@caesar.elte.hu

ELTE IK Komputeralgebra Tanszék

λſ	1.5	1	: 1
IVL	OU	.va	C10

	Fizika	Informatika
ie.2300-2700	ókori egyiptom csillagászat	 Mezopotámia abakusz
\sim ie. 300		Euklidesz algoritmus
ie. 287	Arkhimédész hidrosztatika	
	:	
1642		B. Pascal mechamikus digitális szg
1687	I. Newton klasszikus mechanika	0 0
:	:	
. 1870	I W Gibbs	
10/0	J. C. Maxwell, L. Boltzmann	
	10^{23} mozg egy	
~ 1850	B. Clausius entrópia	
1887	H. Poencare Naprendszer stabilitása	
1894	L. Boltzmann információ fogalma	
1911	E. Rustherford atommag	
1916	A. Einstein általános relativitáselmélet	
1926	P. Dirac kvantummechanika	
1928		R. Hartley függvény
1936		A. Turing Turing teszt
1943		W. Mc Culloch, W. Pitts neuronhálózat
1948		C.E. Shannon entrópia
1949	Wigner Jenő szimmetriák	Neumann János EDVAC
~ 1950		J. McCarthy mesterséges intelligencia
1958	E. Lorenz konvekciómodell, káosz (pillangó hatás)	Royal-McBee LGP-30
1963	M. Gell-Mann, G. Zweig kvark	
1967		G. Amdahl Amdahl törvény
1974	K. Wilson rács térelmélet	
1980		kvantumszámítógép
		P. Benioff, R. Feynman
1982	B. Mandelbrot The fractal geometry of Nature	
1990	CERN	www Tim Berners-Lee
1999	Barabasi A-L. komplex halozatok	
2003	ATLAS ~ $40 \cdot 10^{\circ}$ esemeny/s (64 TD /-)(1 db 1 6MD)	
	(04 IB/S)(1 dD 1.0 MB)	
	1 milliánd agamány /áy, leb 2 milliánd agamány gzimuláciá /áy	
	1 miniard esemeny/ev, kb 5 miniard esemeny szimulació/ev	
	1 esemény rekonstruálása · b 20 sec	
	O(100)PB tárhely	
2015		szuperszámítógén Tianhe-2
2010		33.86 Petaflopp/sec
:		

Iskolateremtés

- $\bullet\,$ Modell számítások
- Módzerek
- Komplex feladatok
- Tervek

Eddigi eredmények

2006-ban csoportot hoztunk létre Dr Vesztergombi György professzor részvételével, aki a kísérleti részecskefizika kutatásban vett részt.

Külföldi ösztöndíj hallgatóknak

2015-:	Forster Richárd	Ph.D Student, CERN, Svájc;
2014-2015:	Forster Richárd	$Technical\ Student/Scientific\ associate\ CERN,\ Svájc$
2011-2012:	Sipos Roland	Technical Student, CERN, Svájc
2011	Bozsogi Balázs	Fellowships, Creative Electronic Systems, Svájc
2010:	Forster Richárd	Summer Student, CERN, Svájc
2010:	Sipos Roland	Summer Student, CERN, Svájc
2009-2010:	Bozsogi Balázs	Technical Students, CERN, Svájc
2009:	Bozsogi Balázs	Student program, CBM, Németország

Nemzetközi konferenciák

2018:	R. Forster
	GPU Days, Wigner Institut Hungary
2017:	R. Forster
	GPU Technology Conference, San Jose California Szilikonvölgy, USA
2017:	R. Forster
	GPU Days, Wigner Institut Hungary
2016:	R. Forster [*] , O. Visnyei
	GPU Technology Conference, San Jose California Szilikonvölgy, USA
2016	R. Forster
	Joint Conf. on Math. and Comp. Sci., ELTE IK, Eger Magyarország
2016	R. Forster
	INES 2016 20. Jubilee IEEE Int. Conf., Budapest, Magyarország
2016:	R. Forster
	GPU Technology Conference, Amsterdam Hollandia,
2015:	P. Fehér [*] , A. Fülöp. I. Csabai, G. Vesztergombi,
	Int. Conf. on Mathematics and Informatics,
	Sapientia Univ, Marosvásárhely, Románia
2015	R. Forster [*] , A. Fülöp,
	GPU Technology Conference, San Jose California Szilikonvölgy, USA
2013:	A. Agócs, A. Fülöp, R. Forster, Gy. Vesztergombi*,
	Wigner-111 Symposium, Budapest, MTA, Magyarország
2013:	R. Forster [*] , A. Fülöp,
	GPU Technology Conference, San Jose California Szilikonvölgy, USA
2012:	R. Sipos [*] , A. László, J. Marcinek, T. Paul, M. Szuba,
	M. Unger, D. Veberic, O. Wyszynski for the NA61 Collaboration,
	Joint Conf. on Math. and Comp. Sci., ELTE IK, SiÅłfok Magyarország
2012	R. Sipos [*] , A. László,
	$\rm NA61/NA49$ Collaboration Meeting, ELTE IK Budapest, Magyarország

2012	A. Agócs, A. Fülöp, R. Forster, G. Vesztergombi*,
	IZEST(International Zettawatt-Exawatt Science and Technology)
	University of Strathclyde Skócia

- A. J. Marcinek, T. Paul, Dr. M. Szuba, M. Unger, D. Veberic,
 O. Wyszynszki, R. Sipos*, A. LászlĂł,
 International Conference of Computing in High Energy and
 Nuclear Physics, New York, USA
- 2012 O. Wyszynski, A. László, A. Jerzy Marcinek, T. Paul, R. Sipos*, M. Szuba, M. Unger, D. Veberic, International Conference of Computing in High Energy and Nuclear Physics, New York, USA
- 2011: G. Benelli, B. Bozsogi^{*}, A. Pfeier, D. Piparo and V. Zemleris, IEEE-2011: Nuclear Science Symposium and Medical Imaging Conference, Valencia Spanyolország
- 2011 R. Sipos^{*}, O. Wyszynski, Na49/61 Collaboration Meeting Ruder Boskovic Institute, Zürich, Svájc
- 2010: Á. Agócs*, Á. Fülöp,
 Joint Conf. on Mathematics and Computer Science
 Selye János Egyetem, Komárno, Szlovákia
- 2009: Á. Fülöp, Z. Gilián, Gy. Vesztergombi* Zimányi 2009 Winter School on Heavy Ion Physics Wigner Intézet, Budapest Magyarország
- 2009: Á. Fülöp, Z. Gilián, Gy. Vesztergombi^{*} European Strategy for Future Neutrino Physics Workshop, Zürich, Svájc

Publikáció

A diákok részvételével készült publikációk az MTMT adatbázisban elérhetőek.

Doktori program

Doktori témavezetés

2015-2018 :Forster Richárd (ELTE IK, CERN Collab.)
Dokt. Isk. Abszolutórium 2018,
'Párhuzamos algoritmusok alkalmazása GPU-n a kísérleti és elméleti fizikában'
16 cikk(4 WoS), 1 könyv, 5 előadás, 8 poszter (konf.: USA, Svájc, Hollandia)

Fontosabb eredmények, cikkek

-Yang-Mills lattice on CUDA,

-Chaotic behavior of the lattice Yang-Mills on CUDA,

-Jet browser model accelerated by GPU,

-Parallel k_T jet clustering algorithm

Előadás a doktori iskolában

-Nemlineáris jelenségek modellezése rácson

-Szimulációs módszerek

További tevékénységek:

Tudományos Diákkör témavezetés

-Forster Richárd, Sipos Roland, 'Nagy adatbázisok párhuzamos feldolgozása', I. díj kari TDK (2010), külön díj OTDK (2011)

-Agócs Ádám, Bozsogi Balázs, 'Nagy hatékonyságú trigger algoritmusok', II. díj kari TDK (2008), III. díj OTDK, (2009)

<u>Kutatási témák</u>

- jet algoritmusok párhuzamosítása,
- pálya rekonstrukció, szimuláció
- rácstérelméleti algoritmusok párhuzamosítása
- DNS szekvenálás
- adatbázis feldolgozás
- dinamikai rendszerek kaotikus viselkedés
- komplexitás
- számelméleti fraktálok

Felhasznált eszközök: C, GPU, VHDL

$\underline{\mathbf{Tervek}}$

- kvantum számítógépek
- meterorológiai rendszerek és a káosz kapcsolata
- skálázható hálózatok
- q-learning rendszerek

÷

Wigner-111

Scalable CaloTracker (SCT) proposal for Ultra High Energy (UHE) accelerators

Adam Agocs1, Agnes Fulop1, Richard Forster1, G. Vesztergombi12,*

¹ Roland Eotvos University, Budapest, ² Wigner RCP, Budapest, Hungary and Roland Eotvos University, Budapest, Hungary vesztergombi.gyorgy@wigner.mta.hu

After discovery of Higgs-boson the particle physical community should with its attention for new challenges directing the focus toward Ulita High Energies. The hope in new accelerator technologies is greatly enhanced by invention of the laser driver plasma wake field methods which in principle, can produce baream with PeV (U19** 00) energy, which cold open the way to perform experiments in controlled conditions in circumstances accessible earlier only for cosmic ray experiments. From the history of LHC II is a welf-hown provet, there is no double that one the necessary instrumentator, the particle detectors here we should like to present a new concept which in addially different from the present hence oncept visual matching and the distribution of the should be accessible exception of penetrating accessible exceptions. The ACRE RM and absorption CALORINETER with full ac coverage for both charged and neutral particles with the usual exception of penetrating neutrinos. The ACRE RM and absorption CALORINETER with full ac coverage for both charged and neutral particles with the usual exception of penetrating neutrinos. Though a development on track-by track base to addig the structure built from HV beams below 2050, one can then the SCT (Scalable Calif Tacker) elector principe at lower energies due to its module scalable extraction. Unclear the SCT (Scalable Calif Tacker) elector principe at lower energies due to its module scalable extraction. (Langhament in the SCT (Scalable Calif Tacker) elector principe at lower energies due to its module scalable extraction. (Langhament is charable with the usual exception of penetrating particles at (Link accessible extraction (Langhament in the Calif Tacker) elector principe at lower energies due to its module scalable extraction. (Langhament is the scalable extraction (Calif Tacker) elector principe at lower energies due to its module scalable extraction. (Langhament is the scalable for the Calif Tacker) elector principe at lower energies due to its module sc

[1] A. Agocs and G. Vesztergombi, Scalable CaloTracker (SCT) proposal for universal particle detector from zero till practically infinite energies, Open Symposion on European Strategy for Particle Physics, 10-12 September 2012 Krakow, Poland, https://indic.cem.ch/contributionDisplay.py?contribid=114&contfl=175067

M. Unger* for the NA61/S

CIRCLE = PARABOLA The circle equation is $x^2 + (y-R)^2 = R^2 \rightarrow y^2 - 2yR + x^2 = 0$ R [m] = $p_0 / (0.3 \text{ B}) = 2 p_0 [\text{GeV/c}]$, if B=5/3 Tesia. curvature: κ [m·]=1/R. At high energies the first solution for y ~ if ~ x / R << 1: $y = R \; (1 \text{-sqrt}(1 \text{-} (x/R)^2)) \sim R \; (\; 1 - (1 \text{-} (x/R)^2/2)) \text{=} (1/2R) x^2$ Parabola with curvature **k** : $y = a x^2 = \kappa x^2 / 2$.

Inclusive single arm hadron: primitive model fixed multiplicity M ~ 10-100

After 3-4 interaction lengths the momenta become precisely measurable

p ₀ =	ZeV	p ₁₀ = Ee ³
ectron		
[De/dx = 1MIP	
p ₁ =	ZeV If M=100, p ₆ = GeV	
roton	De/dx = 1MIP	
Po =	ZeV If M=100, ps = GeV	
100 nucleus		

One needs $\lambda > Z_0$ if higher precision electron energy measurement is required.

Detectors for the final products of the shower

M. Urger* for the NA61/SHINE Collaboration

Inclusive single arm EM

In EM-showers one needs 10 generations to go down 1000 in mo

Detector at the interaction point at accelerators

			Short	Long				
eV	?e\	L[x=1cm]	x[L=10m]	x[L=100m]	R	к (m ⁻¹)	Ν	δκ 84 = 10 s
108	0.1 Ge\	.063 m			.2 m	5	6	
10º	1 Ge\	.2 m	-	-	2 m	5 10-1	20	
1011	10	.63 m	-		20 m	5 10-2	63	
1011	100	2 m	-	-	200 m	5 10*	200	
1012	1 TeV	6.3 m	~	-	2 km	5 10+	630	
1013	10	20 m	2.5 mm	-	20 km	5 10%	103	10-7
1014	100	63 m	.25 mm	-	200 km	5 10 4	10º.	
1015	1 Pe\	200 m	25 µ	2.5 mm	2 10 ³ km	5 10 ^{-r}	104.	3.10*
1016	10	630 m	2.5 µ	.25 mm	2 10 ⁴ km	5 10*	104	
1017	100	2 km	.25 µ	25 H	2 10 ⁵ km	5 10°	104	
1018	1 Ee\	6.3 km	25 nm	2.5 µ	2 10 ⁹ km	5 10 10	104	
1018	10	20 km	2.5 nm	.25 µ	2 10 ⁷ km	5 10-11	104	
1020	100	63 km	.25 nm	25 nm	2 10º km	5 10-12	104	
1021	1 ZeV	200 km	25 pm	.2.5 nm	2 10 ^a km	5 1013	104	

If: Magnetic field = 5/3 Tesla; p [GeV/c] = 0.3 B [Tesla] R [m] = 0.5R; $\kappa = 1/R$ [m'] According to the PDG formula the curvature resolution $\delta \kappa = \delta x / L^2 \operatorname{sqrt}(720/(N+4)) [1/m] = \delta x / L^2 \operatorname{sqrt}(720/(100^{\circ}L+4)), where N= 100[m^{\circ}]^{\circ}L[m]$

Inclusive single arm mix

ical tree retion can separate EM and hadronic

